期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:9
页码:1
DOI:10.1073/pnas.2022319118
出版社:The National Academy of Sciences of the United States of America
摘要:Ever since the discovery of X-rays, tremendous efforts have been made to develop new imaging techniques for unlocking the hidden secrets of our world and enriching our understanding of it. X-ray differential phase contrast imaging, which measures the gradient of a sample’s phase shift, can reveal more detail in a weakly absorbing sample than conventional absorption contrast. However, normally only the gradient’s component in two mutually orthogonal directions is measurable. In this article, omnidirectional differential phase images, which record the gradient of phase shifts in all directions of the imaging plane, are efficiently generated by scanning an easily obtainable, randomly structured modulator along a spiral path. The retrieved amplitude and main orientation images for differential phase yield more information than the existing imaging methods. Importantly, the omnidirectional dark-field images can be simultaneously extracted to study strongly ordered scattering structures. The proposed method can open up new possibilities for studying a wide range of complicated samples composed of both heavy, strongly scattering atoms and light, weakly scattering atoms.
关键词:X-ray phase contrast ; dark field ; material science ; X-ray speckle