期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:5
页码:1
DOI:10.1073/pnas.2022303118
出版社:The National Academy of Sciences of the United States of America
摘要:An analytical derivation of the vibrational density of states (DOS) of liquids, and, in particular, of its characteristic linear in frequency low-energy regime, has always been elusive because of the presence of an infinite set of purely imaginary modes—the instantaneous normal modes (INMs). By combining an analytic continuation of the Plemelj identity to the complex plane with the overdamped dynamics of the INMs, we derive a closed-form analytic expression for the low-frequency DOS of liquids. The obtained result explains, from first principles, the widely observed linear in frequency term of the DOS in liquids, whose slope appears to increase with the average lifetime of the INMs. The analytic results are robustly confirmed by fitting simulations data for Lennard-Jones liquids, and they also recover the Arrhenius law for the average relaxation time of the INMs, as expected.
关键词:liquids ; vibrational properties ; unstable states ; instantaneous normal modes