期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:2
页码:1
DOI:10.1073/pnas.2008284117
出版社:The National Academy of Sciences of the United States of America
摘要:Terrestrial ecosystems are increasingly enriched with resources such as atmospheric CO 2 that limit ecosystem processes. The consequences for ecosystem carbon cycling depend on the feedbacks from other limiting resources and plant community change, which remain poorly understood for soil CO 2 efflux, J CO2 , a primary carbon flux from the biosphere to the atmosphere. We applied a unique CO 2 enrichment gradient (250 to 500 µL L −1 ) for eight years to grassland plant communities on soils from different landscape positions. We identified the trajectory of J CO2 responses and feedbacks from other resources, plant diversity [effective species richness, exp(H)], and community change (plant species turnover). We found linear increases in J CO2 on an alluvial sandy loam and a lowland clay soil, and an asymptotic increase on an upland silty clay soil. Structural equation modeling identified CO 2 as the dominant limitation on J CO2 on the clay soil. In contrast with theory predicting limitation from a single limiting factor, the linear J CO2 response on the sandy loam was reinforced by positive feedbacks from aboveground net primary productivity and exp(H), while the asymptotic J CO2 response on the silty clay arose from a net negative feedback among exp(H), species turnover, and soil water potential. These findings support a multiple resource limitation view of the effects of global change drivers on grassland ecosystem carbon cycling and highlight a crucial role for positive or negative feedbacks between limiting resources and plant community structure. Incorporating these feedbacks will improve models of terrestrial carbon sequestration and ecosystem services.