期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:1
页码:1
DOI:10.1073/pnas.2013254118
出版社:The National Academy of Sciences of the United States of America
摘要:Coastal dunes protect beach communities and ecosystems from rising seas and storm flooding and influence the stability of barrier islands by preventing overwashes and limiting barrier migration. Therefore, the degree of dune recovery after a large storm provides a simple measure of the short-term resiliency (and potential long-term vulnerability) of barrier islands to external stresses. Dune recovery is modulated by low-intensity/high-frequency high-water events (HWEs), which remain poorly understood compared to the low-frequency extreme events eroding mature dunes and dominating the short-term socio-economic impacts on coastal communities. Here, we define HWEs and analyze their probabilistic structure using time series of still-water level and deep-water wave data from multiple locations around the world. We find that HWEs overtopping the beach can be modeled as a marked Poisson process with exponentially distributed sizes or marks and have a mean size that varies surprisingly little with location. This homogeneity of global HWEs is related to the distribution of the extreme values of a wave-runup parameter, H R = H s L 0 , defined in terms of deep-water significant wave height H s and peak wavelength L 0 . Furthermore, the characteristic beach elevation at any given location seems to be tied to a constant HWE frequency of about one event per month, which suggests a stochastic dynamics behind beach stabilization. Our results open the door to the development of stochastic models of beach, dune, and barrier dynamics, as well as a better understanding of wave-driven nuisance flooding.
关键词:high water event ; marked Poisson process ; dune recovery ; beach dynamics ; wave runup