首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A genome-wide microRNA screen identifies the microRNA-183/96/182 cluster as a modulator of circadian rhythms
  • 本地全文:下载
  • 作者:Lili Zhou ; Caitlyn Miller ; Loren J. Miraglia
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:1
  • 页码:1
  • DOI:10.1073/pnas.2020454118
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription–translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.
  • 关键词:circadian rhythms ; miRNA ; genome-wide screen ; miR-183/96/182 cluster
国家哲学社会科学文献中心版权所有