期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:1
页码:1
DOI:10.1073/pnas.2012892118
出版社:The National Academy of Sciences of the United States of America
摘要:We hereby show that root systems adapt to a spatially discontinuous pattern of water availability even when the gradients of water potential across them are vanishingly small. A paper microfluidic approach allowed us to expose the entire root system of Brassica rapa plants to a square array of water sources, separated by dry areas. Gradients in the concentration of water vapor across the root system were as small as 10 −4 ⋅mM⋅m −1 (∼4 orders of magnitude smaller than in conventional hydrotropism assays). Despite such minuscule gradients (which greatly limit the possible influence of the well-understood gradient-driven hydrotropic response), our results show that 1) individual roots as well as the root system as a whole adapt to the pattern of water availability to maximize access to water, and that 2) this adaptation increases as water sources become more rare. These results suggest that either plant roots are more sensitive to water gradients than humanmade water sensors by 3–5 orders of magnitude, or they might have developed, like other organisms, mechanisms for water foraging that allow them to find water in the absence of an external gradient in water potential.
关键词:hydrotropism ; root phenotyping ; paper microfluidics ; water stress