首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:A Partial Hierarchical Model for Online Low-Resolution Wear Particle Images Classification
  • 本地全文:下载
  • 作者:Xuxu Guo ; Rui Tan ; Mingyang Yang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-10
  • DOI:10.1155/2021/6630247
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Wear particle image analysis is an effective method to detect wear condition of mechanical devices. However, the recognition accuracy and recognition efficiency for online wear particle automatic recognition are always mutual restricted because the online wear particle images have almost no texture information and lack clarity. Especially for confusing fatigue wear particles and sliding wear particles, the online recognition is a challenging task. Based on this requirement, a super-resolution reconstruct technique and partial hierarchical convolutional neural network, SR-PHnet, is proposed to classify wear particles in one step. The structure of this network is composed by three modules, one is super-resolution layer module, the second is convolutional neural network classifier module, and the third is support vector machine (SVM) classifier module. The classification result of the second module is partial input to the third module for precision classification of fatigue and sliding particles. In addition, a new feature of radial edge factor (REF) is put forward to target fatigue and sliding wear particles. The test result shows that the new feature has the capability to distinguish fatigue and sliding particles well and time saving. The comparison experiments of the convolution neural network (CNN) method, support vector machine method (SVM) with and without REF feature, and integrated model of back-propagation (BP) and CNN are produced. The comparison results show that the online recognition speed and online recognition rate of the proposed SR-PHnet model in this paper are both improved markedly, especially for fatigue and sliding wear particles.
国家哲学社会科学文献中心版权所有