首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Adjusted Extreme Conditional Quantile Autoregression with Application to Risk Measurement
  • 本地全文:下载
  • 作者:Martin M. Kithinji ; Peter N. Mwita ; Ananda O. Kube
  • 期刊名称:Journal of Probability and Statistics
  • 印刷版ISSN:1687-952X
  • 电子版ISSN:1687-9538
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-10
  • DOI:10.1155/2021/6697120
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we propose an extreme conditional quantile estimator. Derivation of the estimator is based on extreme quantile autoregression. A noncrossing restriction is added during estimation to avert possible quantile crossing. Consistency of the estimator is derived, and simulation results to support its validity are also presented. Using Average Root Mean Squared Error (ARMSE), we compare the performance of our estimator with the performances of two existing extreme conditional quantile estimators. Backtest results of the one-day-ahead conditional Value at Risk forecasts are also given.
国家哲学社会科学文献中心版权所有