摘要:A successful football team not only consists of more than a dozen people on the field but also includes a complete training, analysis, coaching team behind it, and the same basic education and youth training system. With the development of scientific concepts and the advancement of computer technology, more people have begun to study the use of modern technology to replace part of the traditional human work with low creativity and the use of more convenient quantitative analysis, prediction and other technologies to assist football professionals’ decision-making. Based on big data and neural network technology, this paper has designed a novel football technical and tactical command decision algorithm. First, the use of big data technology for analyzing the characteristics of the historical big data of football competitions provides valuable data for the work of this article. Secondly, to formulate scientific and reasonable football technical and tactical command, it requires learning effective offensive or defensive strategies from the big data of football competitions. This article uses deep neural networks to learn massive amounts of football competition data, which can effectively predict the offensive and defensive tactics of each position of the team to a certain extent. In addition, in order to better learn the timing video data of football matches, this paper also has proposed to use long- and short-term memory networks to improve the algorithm of this paper. The proposed method has achieved good results in football technical and tactical command and decision-making and also provides some new ideas for the subject of football combined with computer technology.