首页    期刊浏览 2024年09月29日 星期日
登录注册

文章基本信息

  • 标题:Asynchronous Spiking Neural P Systems with Multiple Channels and Symbols
  • 本地全文:下载
  • 作者:Wenmei Yi ; Zeqiong Lv ; Hong Peng
  • 期刊名称:COMPUTING AND INFORMATICS
  • 印刷版ISSN:1335-9150
  • 出版年度:2020
  • 卷号:39
  • 期号:5
  • 页码:925-951
  • DOI:10.31577/cai_2020_5_925
  • 出版社:COMPUTING AND INFORMATICS
  • 摘要:Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computation systems, inspired from the way that the neurons process and communicate information by means of spikes. A new variant of SNP systems, which works in asynchronous mode, asynchronous spiking neural P systems with multiple channels and symbols (ASNP-MCS systems, in short), is investigated in this paper. There are two interesting features in ASNP-MCS systems: multiple channels and multiple symbols. That is, every neuron has more than one synaptic channels to connect its subsequent neurons, and every neuron can deal with more than one type of spikes. The variant works in asynchronous mode: in every step, each neuron can be free to fire or not when its rules can be applied. The computational completeness of ASNP-MCS systems is investigated. It is proved that ASNP-MCS systems as number generating and accepting devices are Turing universal. Moreover, we obtain a small universal function computing device that is an ASNP-MCS system with 67 neurons. Specially, a new idea that can solve ``block'' problems is proposed in INPUT modules. Download data is not yet available.
  • 其他摘要:Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computation systems, inspired from the way that the neurons process and communicate information by means of spikes. A new variant of SNP systems, which works in asynchronous mode, asynchronous spiking neural P systems with multiple channels and symbols (ASNP-MCS systems, in short), is investigated in this paper. There are two interesting features in ASNP-MCS systems: multiple channels and multiple symbols. That is, every neuron has more than one synaptic channels to connect its subsequent neurons, and every neuron can deal with more than one type of spikes. The variant works in asynchronous mode: in every step, each neuron can be free to fire or not when its rules can be applied. The computational completeness of ASNP-MCS systems is investigated. It is proved that ASNP-MCS systems as number generating and accepting devices are Turing universal. Moreover, we obtain a small universal function computing device that is an ASNP-MCS system with 67 neurons. Specially, a new idea that can solve ``block'' problems is proposed in INPUT modules.
  • 关键词:Membrane computing; spiking neural P systems; asynchronous systems; multiple channels; multiple symbols; Turing universality
  • 其他关键词:Membrane computing;spiking neural P systems;asynchronous systems;multiple channels;multiple symbols;Turing universality
国家哲学社会科学文献中心版权所有