摘要:Based on thermo-mechanical coupling and elastoplastic theory, a finite element (FE) numerical simulation was adopted to study the stability of slopes in cold regions under freeze-thaw cycles. And the prediction of slope landslide was also studied through the calculation of strength reduction coefficients combination. The result shows that the development of the slope vertical displacement under freeze-thaw cycles can be divided into two stages: rapid stage and stable stage. After combining the two reduction coefficients of cohesion and internal friction of the soil, the maximum vertical displacement on the top of the slope in this region can be calculated as a reference for predicting the slope landslides. Meanwhile, the corresponding safety factor of the slope in the cold region can be obtained according to the reduction coefficients. .
其他摘要:Based on thermo-mechanical coupling and elastoplastic theory, a finite element (FE) numerical simulation was adopted to study the stability of slopes in cold regions under freeze-thaw cycles. And the prediction of slope landslide was also studied through the calculation of strength reduction coefficients combination. The result shows that the development of the slope vertical displacement under freeze-thaw cycles can be divided into two stages: rapid stage and stable stage. After combining the two reduction coefficients of cohesion and internal friction of the soil, the maximum vertical displacement on the top of the slope in this region can be calculated as a reference for predicting the slope landslides. Meanwhile, the corresponding safety factor of the slope in the cold region can be obtained according to the reduction coefficients. .