摘要:In order to solve the problem that the frequency stability of power system is threatened due to inertia and damping reduction. In this paper, an adaptive control strategy of virtual synchronous generator based on improved multi-objective particle swarm optimization algorithm with physical process is proposed. This method takes into account the static and dynamic performance of the system, and in the face of small disturbances, it can adjust the moment of inertia and damping in a planned way and reduce the search range of the moment of inertia, thereby reducing the frequency deviation and speeding up the end of the transition process.
其他摘要:In order to solve the problem that the frequency stability of power system is threatened due to inertia and damping reduction. In this paper, an adaptive control strategy of virtual synchronous generator based on improved multi-objective particle swarm optimization algorithm with physical process is proposed. This method takes into account the static and dynamic performance of the system, and in the face of small disturbances, it can adjust the moment of inertia and damping in a planned way and reduce the search range of the moment of inertia, thereby reducing the frequency deviation and speeding up the end of the transition process.