首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:Research Progress of Locally Resonance Acoustic Metamaterials
  • 本地全文:下载
  • 作者:Du Zhehua
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:248
  • 页码:1041
  • DOI:10.1051/e3sconf/202124801041
  • 出版社:EDP Sciences
  • 摘要:Bragg scattering phonon crystal and locally resonant acoustic metamaterials were introduced. In order to generate noise reduction, the lattice constant of Bragg scattering phonon crystal should be of the same order of magnitude as the wave length of the sound wave, therefore, its application field is limited. Locally resonant acoustic metamaterials consume sound energy by coupling its own resonant frequencies with those of sound waves at close range. Its size is two orders of magnitude smaller than the wavelength of sound wave; thus, the control of low-frequency noise by small-size acoustic metamaterials is realized. Locally resonant acoustic metamaterials have some extraordinary physical characteristic in the conventional medium for their special acoustic structural units, such as negative refraction and negative mass density. Especially in low frequency band, they have acoustic forbidden band in which the sound wave transmission is prohibited. Acoustic structural unit having resonant characteristics has been developed. Surface-mounted resonant element plate structures and thin film acoustic metamaterials are the normal types of locally resonant acoustic metamaterials. Their research and development provide a new method for low-frequency noise control.
  • 其他摘要:Bragg scattering phonon crystal and locally resonant acoustic metamaterials were introduced. In order to generate noise reduction, the lattice constant of Bragg scattering phonon crystal should be of the same order of magnitude as the wave length of the sound wave, therefore, its application field is limited. Locally resonant acoustic metamaterials consume sound energy by coupling its own resonant frequencies with those of sound waves at close range. Its size is two orders of magnitude smaller than the wavelength of sound wave; thus, the control of low-frequency noise by small-size acoustic metamaterials is realized. Locally resonant acoustic metamaterials have some extraordinary physical characteristic in the conventional medium for their special acoustic structural units, such as negative refraction and negative mass density. Especially in low frequency band, they have acoustic forbidden band in which the sound wave transmission is prohibited. Acoustic structural unit having resonant characteristics has been developed. Surface-mounted resonant element plate structures and thin film acoustic metamaterials are the normal types of locally resonant acoustic metamaterials. Their research and development provide a new method for low-frequency noise control.
国家哲学社会科学文献中心版权所有