摘要:In order to study the influence of wind shear on the aerodynamic characteristics of large wind turbines, taking the 5MW wind turbine blade model published by NREL as the research object, large eddy simulation (LES) of wind turbines was carried out by using XFlow fluid simulation software based on Lattice-Boltzmann method (LBM). WALE turbulence model was used to study wind shear at 3, 11.2 and 25m/s wind speeds. The effect of factors on the axial thrust and torque of wind turbines is compared with the data published by NREL. The results show that the XFlow software based on LBM and LES method has good capturing ability for the eddy wake of wind turbine; wind shear causes the airfoil section of each section of blade to deviate from the best designed attack angle in theory and results in a decrease in torque applied to the wind turbine.
其他摘要:In order to study the influence of wind shear on the aerodynamic characteristics of large wind turbines, taking the 5MW wind turbine blade model published by NREL as the research object, large eddy simulation (LES) of wind turbines was carried out by using XFlow fluid simulation software based on Lattice-Boltzmann method (LBM). WALE turbulence model was used to study wind shear at 3, 11.2 and 25m/s wind speeds. The effect of factors on the axial thrust and torque of wind turbines is compared with the data published by NREL. The results show that the XFlow software based on LBM and LES method has good capturing ability for the eddy wake of wind turbine; wind shear causes the airfoil section of each section of blade to deviate from the best designed attack angle in theory and results in a decrease in torque applied to the wind turbine.