首页    期刊浏览 2025年06月13日 星期五
登录注册

文章基本信息

  • 标题:Gas Steady-state Diffusion in Fractal Porous Media
  • 本地全文:下载
  • 作者:Du Zhehua
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:248
  • 页码:1011
  • DOI:10.1051/e3sconf/202124801011
  • 出版社:EDP Sciences
  • 摘要:Gas diffusion in fractal pores does not follow the classic Fick’s and Knudsen’s laws, so more research on gas diffusion in fractal porous media is needed. Fractal pore models are generated using the random walk method. The gas diffusion governing equations for the fractal pores are derived from the classic kineti theory of gases. The gas diffusion model is used to study the gas diffusion in fractal porous meida and to determine steady-state diffusion coefficient formulas. The results show that the diffusion coefficient is proportional to the mean proe diameter, porosity, and the exponetial function of the fractal dimension in the Knudsen diffusion regime. The diffusion coefficient is not only related to the three pore parameters but is also related to the molecular mean free path in the configurational diffusion regime.
  • 其他摘要:Gas diffusion in fractal pores does not follow the classic Fick’s and Knudsen’s laws, so more research on gas diffusion in fractal porous media is needed. Fractal pore models are generated using the random walk method. The gas diffusion governing equations for the fractal pores are derived from the classic kineti theory of gases. The gas diffusion model is used to study the gas diffusion in fractal porous meida and to determine steady-state diffusion coefficient formulas. The results show that the diffusion coefficient is proportional to the mean proe diameter, porosity, and the exponetial function of the fractal dimension in the Knudsen diffusion regime. The diffusion coefficient is not only related to the three pore parameters but is also related to the molecular mean free path in the configurational diffusion regime.
国家哲学社会科学文献中心版权所有