首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2
  • 本地全文:下载
  • 作者:Prabir K. Patra ; Tomohiro Hajima ; Ryu Saito
  • 期刊名称:Progress in Earth and Planetary Science
  • 电子版ISSN:2197-4284
  • 出版年度:2021
  • 卷号:8
  • 期号:1
  • 页码:1-18
  • DOI:10.1186/s40645-021-00420-z
  • 出版社:Springer Verlag
  • 摘要:Abstract The measurements of one of the major greenhouse gases, carbon dioxide (CO 2 ), are being made using dedicated satellite remote sensing since the launch of the greenhouse gases observing satellite (GOSAT) by a three-way partnership between the Japan Aerospace Exploration Agency (JAXA), the Ministry of Environment (MoE) and the National Institute for Environmental Studies (NIES), and the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2). In the past 10 years, estimation of CO 2 fluxes from land and ocean using the earth system models (ESMs) and inverse modelling of in situ atmospheric CO 2 data have also made significant progress. We attempt, for the first time, to evaluate the CO 2 fluxes simulated by an earth system model (MIROC-ES2L) and the fluxes estimated by an inverse model (MIROC4-Inv) using in situ data by comparing with GOSAT and OCO-2 observations. Both MIROC-ES2L and MIROC4-Inv fluxes are used in the MIROC4-atmospheric chemistry transport model (referred to as ACTM_ES2LF and ACTM_InvF, respectively) for calculating total column CO 2 mole fraction (XCO 2 ) that are sampled at the time and location of the satellite measurements. Both the ACTM simulations agreed well with the GOSAT and OCO-2 satellite observations, within 2 ppm for the spatial maps and time evolutions of the zonal mean distributions. Our results suggest that the inverse model using in situ data is more consistent with the OCO-2 retrievals, compared with those of the GOSAT XCO 2 data due to the higher accuracy of the former. This suggests that the MIROC4-Inv fluxes are of sufficient quality to evaluate MIROC-ES2L simulated fluxes. The ACTM_ES2LF simulation shows a slightly weaker seasonal cycle for the meridional profiles of CO 2 fluxes, compared with that from the ACTM_InvF. This difference is revealed by greater XCO 2 differences for ACTM_ES2LF vs GOSAT, compared with those of ACTM_InvF vs GOSAT. Using remote sensing–based global products of leaf area index (LAI) and gross primary productivity (GPP) over land, we show a weaker sensitivity of MIROC-ES2L biospheric activities to the weather and climate in the tropical regions. Our results clearly suggest the usefulness of XCO 2 measurements by satellite remote sensing for evaluation of large-scale ESMs, which so far remained untested by the sparse in situ data.
  • 其他摘要:Abstract The measurements of one of the major greenhouse gases, carbon dioxide (CO 2 ), are being made using dedicated satellite remote sensing since the launch of the greenhouse gases observing satellite (GOSAT) by a three-way partnership between the Japan Aerospace Exploration Agency (JAXA), the Ministry of Environment (MoE) and the National Institute for Environmental Studies (NIES), and the National Aeronautics and Space Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2). In the past 10 years, estimation of CO 2 fluxes from land and ocean using the earth system models (ESMs) and inverse modelling of in situ atmospheric CO 2 data have also made significant progress. We attempt, for the first time, to evaluate the CO 2 fluxes simulated by an earth system model (MIROC-ES2L) and the fluxes estimated by an inverse model (MIROC4-Inv) using in situ data by comparing with GOSAT and OCO-2 observations. Both MIROC-ES2L and MIROC4-Inv fluxes are used in the MIROC4-atmospheric chemistry transport model (referred to as ACTM_ES2LF and ACTM_InvF, respectively) for calculating total column CO 2 mole fraction (XCO 2 ) that are sampled at the time and location of the satellite measurements. Both the ACTM simulations agreed well with the GOSAT and OCO-2 satellite observations, within 2 ppm for the spatial maps and time evolutions of the zonal mean distributions. Our results suggest that the inverse model using in situ data is more consistent with the OCO-2 retrievals, compared with those of the GOSAT XCO 2 data due to the higher accuracy of the former. This suggests that the MIROC4-Inv fluxes are of sufficient quality to evaluate MIROC-ES2L simulated fluxes. The ACTM_ES2LF simulation shows a slightly weaker seasonal cycle for the meridional profiles of CO 2 fluxes, compared with that from the ACTM_InvF. This difference is revealed by greater XCO 2 differences for ACTM_ES2LF vs GOSAT, compared with those of ACTM_InvF vs GOSAT. Using remote sensing–based global products of leaf area index (LAI) and gross primary productivity (GPP) over land, we show a weaker sensitivity of MIROC-ES2L biospheric activities to the weather and climate in the tropical regions. Our results clearly suggest the usefulness of XCO 2 measurements by satellite remote sensing for evaluation of large-scale ESMs, which so far remained untested by the sparse in situ data.
  • 关键词:Carbon dioxide (CO2); Global and regional carbon cycle; Earth system model; Inverse model; Atmospheric chemistry transport model
国家哲学社会科学文献中心版权所有