首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Research on the intermediate phase of 40CrMnSiB steel shell under different heat treatments
  • 本地全文:下载
  • 作者:Wei-bing Li ; Zhi-chuang Chen ; Xiao-ming Wang
  • 期刊名称:Defence Technology
  • 印刷版ISSN:2214-9147
  • 出版年度:2021
  • 卷号:17
  • 期号:3
  • 页码:1032-1041
  • DOI:10.1016/j.dt.2020.06.009
  • 出版社:Elsevier B.V.
  • 摘要:In this study, 40CrMnSiB steel cylindrical shells were tempered at 350, 500 and 600 °C to study the effect of tempering temperature on the dynamic process of expansion and fracture of the metal shell. A mid-explosion recovery experiment for the metal cylinder under internal explosive loading was designed, and the wreckage of the casings at the intermediate phase was obtained. The effects of different tempering temperatures on the macroscopic and microscopic fracture characteristics of 40CrMnSiB steel were studied. The influence of tempering temperatures on the fracture characteristic parameters of the recovered wreckage were measured and analyzed, including the circumferential divide size, the thickness and the number of the circumferential divisions. The results show that as the tempering temperature was increased from 350 to 600 °C, at first, the degree of fragmentation and the fracture characteristic parameters of the recovered wreckage changed significantly and then became essentially consistent. Scanning electron microscopy analysis revealed flow-like structure characteristics caused by adiabatic shear on different fracture surfaces. At the detonation initiation end of the casing, fracturing was formed by tearing along the crack, which existed a distance from the initiation end and propagated along the axis direction. In contrast, the fracturing near the middle position consists of a plurality of radial shear fracture units. The amount of alloy carbide that was precipitated during the tempering process increased continuously with tempering temperature, leading to an increasing number of spherical carbide particles scattered around the fracture surface.
  • 关键词:Explosive mechanics ; Mid-explosion recovery experiment ; Explosion and fracture ; Heat treatment ; SEM (Scanning electron microscope) fracture analysis
国家哲学社会科学文献中心版权所有