首页    期刊浏览 2025年07月11日 星期五
登录注册

文章基本信息

  • 标题:Predicting a Need for Financial Assistance in Emergency Department Care
  • 本地全文:下载
  • 作者:Samuel Davis ; Sara Nourazari ; Rachel Granovsky
  • 期刊名称:Healthcare
  • 电子版ISSN:2227-9032
  • 出版年度:2021
  • 卷号:9
  • 期号:5
  • 页码:556
  • DOI:10.3390/healthcare9050556
  • 出版社:MDPI Publishing
  • 摘要:Identifying patients with a low likelihood of paying their bill serves the needs of patients and providers alike: aligning government programs with their target beneficiaries while minimizing patient frustration and reducing waste among emergency physicians by streamlining the billing process. The goal of this study was to predict the likelihood of patients paying the balance of their emergency department visit bill within 90 days of receipt. Three machine learning methodologies were applied to predict payment: logistic regression, decision tree, and random forest. Models were trained and performance was measured using 1,055,941 patients with non-zero balances across 27 EDs from 1 August 2015 to 31 July 2017. The decision tree accurately predicted 87% of unsuccessful payments, providing significant opportunities to identify patients in need of financial assistance.
  • 关键词:healthcare finance; health equity; emergency department; predictive modeling; Medicaid healthcare finance ; health equity ; emergency department ; predictive modeling ; Medicaid
国家哲学社会科学文献中心版权所有