期刊名称:Revista brasileira de crescimento e desenvolvimento humano
印刷版ISSN:0104-1282
电子版ISSN:2175-3598
出版年度:2021
卷号:31
期号:1
页码:152-176
DOI:10.36311/jhgd.v31.11074
出版社:Centro de Estudos de Crescimento e Desenvolvimento do Ser Humano
摘要:BACKGROUNG : Brugada syndrome (BrS) is a hereditary clinical-electrocardiographic arrhythmic entity with low worldwide prevalence. The syndrome is caused by changes in the structure and function of certain cardiac ion channels and reduced expression of Connexin 43 (Cx43) in the Right Ventricle (RV), predominantly in the Right Ventricular Outflow Tract (VSVD), causing electromechanical abnormalities. The diagnosis is based on the presence of spontaneous or medicated ST elevation, characterized by boost of the J point and the ST segment ≥2 mm, of superior convexity "hollow type" (subtype 1A) or descending rectilinear model (subtype 1B). BrS is associated with an increased risk of syncope, palpitations, chest pain, convulsions, difficulty in breathing (nocturnal agonal breathing) and/or Sudden Cardiac Death (SCD) secondary to PVT/VF, unexplained cardiac arrest or documented PVT/VF or Paroxysmal atrial fibrillation (AF) in the absence of apparent macroscopic or structural heart disease, electrolyte disturbance, use of certain medications or coronary heart disease and fever. In less than three decades since the discovery of Brugada syndrome, the concept of Mendelian heredity has come undone. The enormous variants and mutations found mean that we are still far from being able to concretely clarify a genotype-phenotype relationship. There is no doubt that the entity is oligogenetic, associated with environmental factors, and that there are variants of uncertain significance, especially the rare variants of the SCN5A mutation, with European or Japanese ancestors, as well as a spontaneous type 1 or induced pattern, thanks to gnomAD (coalition) researchers who seek to aggregate and harmonize exome and genome sequencing data from a variety of large-scale sequencing projects and make summary data available to the scientific community at large). Thus, we believe that this in-depth analytical study of the countless mutations attributed to BrS may constitute a real cornerstone that will help to better understand this intriguing syndrome.
关键词:Síndrome de Brugada;arrítmica;ambiental;genótipo;fenótipo