摘要:A multi-AGV based logistic system is typically associated with two fundamental problems, critical for its overall performance: the AGV’s route planning for collision and deadlock avoidance; and the task scheduling to determine which vehicle should transport which load. Several heuristic functions can be used according to the application. This paper proposes a time-based algorithm to dynamically control a fleet of Autonomous Guided Vehicles (AGVs) in an automatic warehouse scenario. Our approach includes a routing algorithm based on the A* heuristic search (TEA*—Time Enhanced A*) to generate free-collisions paths and a scheduling module to improve the results of the routing algorithm. These modules work cooperatively to provide an efficient task execution time considering as basis the routing algorithm information. Simulation experiments are presented using a typical industrial layout for 10 and 20 AGVs. Moreover, a comparison with an alternative approach from the state-of-the-art is also presented.