首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Physics Informed by Deep Learning: Numerical Solutions of Modified Korteweg-de Vries Equation
  • 本地全文:下载
  • 作者:Yuexing Bai ; Temuer Chaolu ; Sudao Bilige
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-11
  • DOI:10.1155/2021/5569645
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, with the aid of symbolic computation system Python and based on the deep neural network (DNN), automatic differentiation (AD), and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithms, we discussed the modified Korteweg-de Vries (mkdv) equation to obtain numerical solutions. From the predicted solution and the expected solution, the resulting prediction error reaches 1 0 − 6 . The method that we used in this paper had demonstrated the powerful mathematical and physical ability of deep learning to flexibly simulate the physical dynamic state represented by differential equations and also opens the way for us to understand more physical phenomena later.
国家哲学社会科学文献中心版权所有