首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Heteroclinic Cycles Imply Chaos and Are Structurally Stable
  • 本地全文:下载
  • 作者:Xiaoying Wu
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-7
  • DOI:10.1155/2021/6647132
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper is concerned with the chaos of discrete dynamical systems. A new concept of heteroclinic cycles connecting expanding periodic points is raised, and by a novel method, we prove an invariant subsystem is topologically conjugate to the one-side symbolic system. Thus, heteroclinic cycles imply chaos in the sense of Devaney. In addition, if a continuous differential map h has heteroclinic cycles in ℝ n , then g has heteroclinic cycles with h − g C 1 being sufficiently small. The results demonstrate C 1 structural stability of heteroclinic cycles. In the end, two examples are given to illustrate our theoretical results and applications.
国家哲学社会科学文献中心版权所有