摘要:Multi-access Edge Computing (MEC), which could provide real-time computing ability, is considered as an effective approach to improve performance of Vehicular Ad Hoc Network (VANET). MEC could process regional vehicles information and generate real-time road hazard features, which could be used to realize trajectory planning progress of vehicles. In this paper, an MEC-oriented VANET infrastructure is presented, and a road hazard feature-based trajectory planning method is proposed. Back Propagation (BP) neural network is employed to predict road hazard feature changing, while a hazard-based cost function is defined. Then, an improved Rapidly Exploring Random Tree (RRT) algorithm is proposed for novel regional trajectory planning. A joint simulation is done based on SUMO and NS3 platforms. Simulation results verify the effectiveness and stability of the proposed algorithm.