首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Method of Amino Acid Terahertz Spectrum Recognition Based on the Convolutional Neural Network and Bidirectional Gated Recurrent Network Model
  • 本地全文:下载
  • 作者:Tao Li ; Yuanyuan Xu ; Jiliang Luo
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-7
  • DOI:10.1155/2021/2097257
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In order to improve the accuracy of amino acid identification, a model based on the convolutional neural network (CNN) and bidirectional gated recurrent network (BiGRU) is proposed for terahertz spectrum identification of amino acids. First, we use the CNN to extract the feature information of the terahertz spectrum; then, we use the BiGRU to process the feature vector of the amino acid time-domain spectrum, describe the time series dynamic change information, and finally achieve amino acid identification through the fully connected network. Experiments are carried out on the terahertz spectra of various amino acids. The experimental results show that the CNN-BiGRU model proposed in this study can effectively realize the terahertz spectrum identification of amino acids and will provide a new and effective analysis method for the identification of amino acids by terahertz spectroscopy technology.
国家哲学社会科学文献中心版权所有