标题:Maternal methylmercury exposure through rice ingestion and child neurodevelopment in the first three years: a prospective cohort study in rural China
期刊名称:Environmental Health - a Global Access Science Source
印刷版ISSN:1476-069X
电子版ISSN:1476-069X
出版年度:2021
卷号:20
期号:1
页码:1-14
DOI:10.1186/s12940-021-00732-z
出版社:BioMed Central
摘要:Rice is an important dietary source for methylmercury; however, rice does not contain the same beneficial nutrients as fish. Our main objective was to assess associations of prenatal methylmercury exposure through rice ingestion with child neurodevelopment in rural China. Eligible peripartum women were enrolled (n = 391), provided peripartum hair samples, and children’s neurodevelopment was assessed at 12 months (n = 264, 68%) and 36 months (n = 190, 48%) using the Bayley Scales of Infant Development, 2nd Edition, including the Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI). Associations between prenatal methylmercury exposure during the third trimester [log2 maternal hair total mercury (THg)] and child’s neurodevelopment were assessed using linear mixed models for repeated measures. In adjusted models, a doubling in maternal hair THg corresponded to a 1.3-point decrement in the MDI score [95% confidence interval (CI): − 2.6, − 0.14], and a 1.2-point decrement in the PDI score (95% CI: − 2.6, 0.14). Overall, adverse associations between maternal hair THg and MDI scores attenuated over time. However, associations were robust and stable over time among children whose primary caregiver was their parent(s). During the study follow-up, an increasing proportion of children were raised by grandparents (12 months: 9% versus 36 months: 27%), a trend associated with rural-to-urban parental migration for work. For young children living in rural China, a biomarker of prenatal methylmercury exposure was associated with decrements in cognitive function assessed between 12 and 36 months of age. Changes in the family structure over the study follow-up time interval potentially impacted children’s sensitivity to prenatal methylmercury exposure.