首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Membrane voltage-dependent activation mechanism of the bacterial flagellar protein export apparatus
  • 本地全文:下载
  • 作者:Tohru Minamino ; Yusuke V. Morimoto ; Miki Kinoshita
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2021
  • 卷号:118
  • 期号:22
  • 页码:1
  • DOI:10.1073/pnas.2026587118
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The proton motive force (PMF) consists of the electric potential difference (Δψ), which is measured as membrane voltage, and the proton concentration difference (ΔpH) across the cytoplasmic membrane. The flagellar protein export machinery is composed of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase ring complex consisting of FliH, FliI, and FliJ. ATP hydrolysis by the FliI ATPase activates the export gate complex to become an active protein transporter utilizing Δψ to drive proton-coupled protein export. An interaction between FliJ and a transmembrane ion channel protein, FlhA, is a critical step for Δψ-driven protein export. To clarify how Δψ is utilized for flagellar protein export, we analyzed the export properties of the export gate complex in the absence of FliH and FliI. The protein transport activity of the export gate complex was very low at external pH 7.0 but increased significantly with an increase in Δψ by an upward shift of external pH from 7.0 to 8.5. This observation suggests that the export gate complex is equipped with a voltage-gated mechanism. An increase in the cytoplasmic level of FliJ and a gain-of-function mutation in FlhA significantly reduced the Δψ dependency of flagellar protein export by the export gate complex. However, deletion of FliJ decreased Δψ-dependent protein export significantly. We propose that Δψ is required for efficient interaction between FliJ and FlhA to open the FlhA ion channel to conduct protons to drive flagellar protein export in a Δψ-dependent manner.
  • 关键词:bacterial flagellum ; membrane voltage ; proton motive force ; type III protein export ; Salmonella
国家哲学社会科学文献中心版权所有