首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Impact of Parameter Tuning for Optimizing Deep Neural Network Models for Predicting Software Faults
  • 本地全文:下载
  • 作者:Mansi Gupta ; Kumar Rajnish ; Vandana Bhattacharjee
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-17
  • DOI:10.1155/2021/6662932
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Deep neural network models built by the appropriate design decisions are crucial to obtain the desired classifier performance. This is especially desired when predicting fault proneness of software modules. When correctly identified, this could help in reducing the testing cost by directing the efforts more towards the modules identified to be fault prone. To be able to build an efficient deep neural network model, it is important that the parameters such as number of hidden layers, number of nodes in each layer, and training details such as learning rate and regularization methods be investigated in detail. The objective of this paper is to show the importance of hyperparameter tuning in developing efficient deep neural network models for predicting fault proneness of software modules and to compare the results with other machine learning algorithms. It is shown that the proposed model outperforms the other algorithms in most cases.
国家哲学社会科学文献中心版权所有