首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo–Fabrizio derivative
  • 本地全文:下载
  • 作者:Sabri T. M. Thabet ; Mohammed S. Abdo ; Kamal Shah
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13662-021-03316-w
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This manuscript is devoted to a study of the existence and uniqueness of solutions to a mathematical model addressing the transmission dynamics of the coronavirus-19 infectious disease (COVID-19). The mentioned model is considered with a nonsingular kernel type derivative given by Caputo–Fabrizo with fractional order. For the required results of the existence and uniqueness of solution to the proposed model, Picard’s iterative method is applied. Furthermore, to investigate approximate solutions to the proposed model, we utilize the Laplace transform and Adomian’s decomposition (LADM). Some graphical presentations are given for different fractional orders for various compartments of the model under consideration.
  • 关键词:34A08 ; 97M70
国家哲学社会科学文献中心版权所有