摘要:In this paper, we consider the linear stability of blowup solution for incompressible Keller–Segel–Navier–Stokes system in whole space $\mathbb{R}^{3}$ . More precisely, we show that, if the initial data of the three dimensional Keller–Segel–Navier–Stokes system is close to the smooth initial function $(0,0,\textbf{u}_{s}(0,x) )^{T}$ , then there exists a blowup solution of the three dimensional linear Keller–Segel–Navier–Stokes system satisfying the decomposition $$ \bigl(n(t,x),c(t,x),\textbf{u}(t,x) \bigr)^{T}= \bigl(0,0, \textbf{u}_{s}(t,x) \bigr)^{T} \mathcal{O}(\varepsilon ), \quad \forall (t,x)\in \bigl(0,T^{*}\bigr) \times \mathbb{R}^{3}, $$ in Sobolev space $H^{s}(\mathbb{R}^{3})$ with $s=\frac{3}{2}-5a$ and constant $0< a\ll 1$ , where $T^{*}$ is the maximal existence time, and $\textbf{u}_{s}(t,x)$ given in (Yan 2018) is the explicit blowup solution admitted smooth initial data for three dimensional incompressible Navier–Stokes equations.