首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:DATA ANALYSIS OF INCOMPLETE REPEATED MEASURES USING A MULTIVARIATE EXTENSION OF THE BROWN-FORSYTHE PROCEDURE
  • 本地全文:下载
  • 作者:Guillermo Vallejo Seco ; María Paula Fernández García ; Pablo Esteban Livacic Rojas
  • 期刊名称:Psicothema
  • 印刷版ISSN:0214-9915
  • 电子版ISSN:1886-144X
  • 出版年度:2018
  • 卷号:30
  • 期号:4
  • 页码:434-441
  • DOI:10.7334/psicothema2018.192
  • 出版社:Cologio Oficial de Psicólogos del Principado
  • 摘要:Background: A multivariate extension of the Brown-Forsythe (MBF) procedure can be used for the analysis of partially repeated measure designs (PRMD) when the covariance matrices are arbitrary. However, the MBF procedure requires complete data over time for each subject, which is a significant limitation of this procedure. This article provides the rules for pooling the results obtained after applying the same MBF analysis to each of the imputed datasets of a PRMD. Method : Montecarlo methods are used to evaluate the proposed solution (MI-MBF), in terms of control of Type I and Type II errors. For comparative purposes, the MBF analysis based on the complete original dataset (OD-MBF) and the covariance pattern model based on an unstructured matrix (CPM-UN) were studied. Results : Robustness and power results showed that the MI-MBF method performed slightly worse than tests based on CPM-UN when the homogeneity assumption was met, but slightly better when that assumption was not met. We also note that without assuming equality of covariance matrices, little power was sacrificed by using the MI-MBF method in place of the OD-MBF method. Conclusions : The results of this study suggest that the MI-MBF method performs well and could be of practical use.
  • 关键词:attrition; multiple imputation; MBF procedure; covariance pattern model; heterogeneous covariance matrices.
国家哲学社会科学文献中心版权所有