期刊名称:Journal of Clinical Biochemistry and Nutrition
印刷版ISSN:0912-0009
电子版ISSN:1880-5086
出版年度:2021
卷号:69
期号:1
页码:16-19
DOI:10.3164/jcbn.20-101
出版社:The Society for Free Radical Research Japan
摘要:Singlet oxygen prefers to react with an electron-rich double bonds. We observed that the oxidation rate for uric acid with singlet oxygen increased with increasing pH and the oxidation rate dramatically was elevated at around pH 5.4 and 9.8, which are the acidity constants of uric acid, pK a1 and pK a2 , respectively. Furthermore, we observed that the absorbance near 200 nm and the molar extinction coefficient (ɛ) increased with increasing pH, similar to the change in oxidation rate. Computer calculations by Chong [Chong, J Theor Comput Sci 2013; 1(1)] revealed that uric acid elongates its C=N conjugated diene structure with increasing pH. This is correlated with an increase in the UV absorbance of C=C double bonds near 200 nm, and may indicate higher electron density in the double bonds. Therefore, we concluded that the increased oxidation rate is due to elongation of the C=N conjugated polyene system at higher pH. On the other hand, the major products were 4-hydroxyallantoin and parabanic acid (hydrolyzed to oxaluric acid at pH 10.7), suggesting that the reaction pathways were the same regardless of pH. Finally, possible reaction schemes are presented.