首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Abnormal Pulmonary Sounds Classification Algorithm using Convolutional Networks
  • 本地全文:下载
  • 作者:Alva Mantari Alicia ; Arancibia-Garcia Alexander ; Chávez Frías William
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:6
  • 页码:408
  • DOI:10.14569/IJACSA.2021.0120645
  • 出版社:Science and Information Society (SAI)
  • 摘要:In the world and in Peru, Acute Respiratory Infections are the main cause of death, especially in the most vulnerable population, children under 5 years of age and older adults. Pneumonia is the leading cause of death of children in the world. 60.2% of pneumonia cases affect children under 5 years of age. Thus, prevention and timely treatment of lung diseases are crucial to reduce infant mortality in Peru. Among the main problems associated with this high is percentage the lack of medical professionals and resources, especially in remote areas, such as Puno, Huancavelica and Arequipa, which experience temperatures as low as -20°C during the cold season. This study develops an algorithm based on computational neural networks to differentiate between normal and abnormal lung sounds. The initial base of 917 sounds was used, through a process of data augmentation, this base was increased to 8253 sounds in total, and this process was carried out due to the need of a large number of data for the use of computational neural networks. From each signal, features were extracted using three methods: MFCC, Melspectogram and STFT. Three models were generated, the first one to classify normal and abnormal, which obtained a training Accuracy of 1 and a testing accuracy of 0.998. The second one classifies normal sound, pneumonia and other abnormalities and obtained training Accuracy values of 0.9959 and a testing accuracy of 0.9885. Finally, we classified by specific ailment where we obtained a training Accuracy of 0.9967 and a testing accuracy of 0.9909. This research provides interesting findings about the diagnosis and classification of lung sounds automatically using convolutional neural networks, which is the beginning for the development of a platform to assess the risk of pneumonia in the first moment, thus allowing rapid care and referral that seeks to reduce mortality associated mainly with pneumonia.
  • 关键词:Algorithm; classification; computational neural networks; lung sounds; mortality; pneumonia
国家哲学社会科学文献中心版权所有