首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A Self-adaptive Algorithm for Solving Basis Pursuit Denoising Problem
  • 本地全文:下载
  • 作者:Mengkai Zhu ; Xu Zhang ; Bing Xue
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:6
  • 页码:884
  • DOI:10.14569/IJACSA.2021.01206103
  • 出版社:Science and Information Society (SAI)
  • 摘要:In this paper, we further consider a method for solving the basis pursuit denoising problem (BPDP), which has received considerable attention in signal processing and statistical inference. To this end, a new self-adaptive algorithm is proposed, its global convergence results is established. Furthermore, we also show that the method is sublinearly convergent rate of O( 1/k). Finally, the availability of given method is shown via somek numerical examples.
  • 关键词:Basis pursuit denoising problem; algorithm; global convergence; sublinearly convergent rate; sparse signal recovery
国家哲学社会科学文献中心版权所有