摘要:In this paper, we study the Cauchy problem for a system of Rayleigh-Stokes equations. In this system of equations, we use derivatives in the classical Riemann-Liouville sense. This system has many applications in some non-Newtonian fluids. We obtained results for the existence, uniqueness, and frequency of the solution. We discuss the stability of the solutions and find the solution spaces. Our main technique is to use the Banach mapping theorem combined with some techniques in Fourier analysis.