首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335
  • 本地全文:下载
  • 作者:Sander Witte ; Léa V. Zinsli ; Rafael Gonzalez-Serrano
  • 期刊名称:Computational and Structural Biotechnology Journal
  • 印刷版ISSN:2001-0370
  • 出版年度:2021
  • 卷号:19
  • 页码:3416-3426
  • DOI:10.1016/j.csbj.2021.06.001
  • 出版社:Computational and Structural Biotechnology Journal
  • 摘要:Bacteriophages (phages) are widely used as biocontrol agents in food and as antibacterial agents for treatment of food production plant surfaces. An important feature of such phages is broad infectivity towards a given pathogenic species. Phages attach to the surfaces of bacterial cells using receptor binding proteins (RBPs), namely tail fibers or tailspikes (TSPs). The binding range of RBPs is the primary determinant of phage host range and infectivity, and therefore dictates a phage’s suitability as an antibacterial agent. Phages EP75 and EP335 broadly infect strains of E. coli serotype O157. To better understand host recognition by both phages, here we focused on characterizing the structures and functions of their RBPs. We identified two distinct tail fibers in the genome of the podovirus EP335: gp12 and gp13. Using fluorescence microscopy, we reveal how gp13 recognizes strains of E. coli serotypes O157 and O26. Phage EP75 belongs to the Kuttervirus genus within the Ackermannviridae family and features a four TSP complex (TSPs 1–4) that is universal among such phages. We demonstrate enzymatic activity of TSP1 (gp167) and TSP2 (gp168) toward the O18A and O157 O-antigens of E. coli, respectively, as well as TSP3 activity (gp169.1) against O4, O7, and O9 Salmonella O-antigens. TSPs of EP75 present high similarity to TSPs from E. coli phages CBA120 (TSP2) and HK620 (TSP1) and Salmonella myovirus Det7 (TSP3), which helps explain the cross-genus infectivity observed for EP75.
  • 关键词:Bacteriophage ; STEC ; Escherichia coli O157 ; Salmonella ; Tail fiber ; Tailspike ; Receptor binding protein ; Lipopolysaccharide ; O-antigen
国家哲学社会科学文献中心版权所有