首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Ergodic Isoenergetic Molecular Dynamics for Microcanonical-Ensemble Averages
  • 本地全文:下载
  • 作者:Wm.G. Hoover ; C.G. Hoover
  • 期刊名称:Computational Methods in Science and Technology
  • 印刷版ISSN:1505-0602
  • 出版年度:2018
  • 卷号:24
  • 期号:2
  • 页码:155-158
  • DOI:10.12921/cmst.2018.0000035
  • 出版社:Poznan Supercomputing and Networking Center
  • 摘要:Considerable research has led to ergodic isothermal dynamics which can replicate Gibbs’ canonical distribution for simple (small) dynamical problems. Adding one or two thermostat forces to the Hamiltonian motion equations can give an ergodic isothermal dynamics to a harmonic oscillator, to a quartic oscillator, and even to the “Mexican-Hat” (doublewell) potential problem. We consider here a time-reversible dynamical approach to Gibbs’ “microcanonical” (isoenergetic) distribution for simple systems. To enable isoenergetic ergodicity we add occasional random rotations to the velocities. This idea conserves energy exactly and can be made to cover the entire energy shell with an ergodic dynamics. We entirely avoid the Poincaré-section holes and island chains typical of Hamiltonian chaos. We illustrate this idea for the simplest possible two-dimensional example, a single particle moving in a periodic square-lattice array of scatterers, the “cell model”.
  • 其他关键词:chaos, ergodicity, Lyapunov exponent, algorithms
国家哲学社会科学文献中心版权所有