首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction
  • 本地全文:下载
  • 作者:Hubie Chen ; Moritz Müller
  • 期刊名称:Logical Methods in Computer Science
  • 印刷版ISSN:1860-5974
  • 电子版ISSN:1860-5974
  • 出版年度:2013
  • 卷号:9
  • 期号:1
  • 页码:1
  • DOI:10.2168/LMCS-9(1:15)2013
  • 出版社:Technical University of Braunschweig
  • 摘要:We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates.
  • 其他关键词:algebraic preservation theorem, quantified constraint satisfaction, polymorphisms, complexity classification
国家哲学社会科学文献中心版权所有