首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Measure Transformer Semantics for Bayesian Machine Learning
  • 本地全文:下载
  • 作者:Johannes Borgström ; Andrew Gordon ; Michael Greenberg
  • 期刊名称:Logical Methods in Computer Science
  • 印刷版ISSN:1860-5974
  • 电子版ISSN:1860-5974
  • 出版年度:2013
  • 卷号:9
  • 期号:3
  • 页码:1
  • DOI:10.2168/LMCS-9(3:11)2013
  • 出版社:Technical University of Braunschweig
  • 摘要:The Bayesian approach to machine learning amounts to computing posterior distributions of random variables from a probabilistic model of how the variables are related (that is, a prior distribution) and a set of observations of variables. There is a trend in machine learning towards expressing Bayesian models as probabilistic programs. As a foundation for this kind of programming, we propose a core functional calculus with primitives for sampling prior distributions and observing variables. We define measure-transformer combinators inspired by theorems in measure theory, and use these to give a rigorous semantics to our core calculus. The original features of our semantics include its support for discrete, continuous, and hybrid measures, and, in particular, for observations of zero-probability events. We compile our core language to a small imperative language that is processed by an existing inference engine for factor graphs, which are data structures that enable many efficient inference algorithms. This allows efficient approximate inference of posterior marginal distributions, treating thousands of observations per second for large instances of realistic models.
  • 其他关键词:Probabilistic Programming, Model-based Machine Learning, Programming Languages, Denotational Semantics.
国家哲学社会科学文献中心版权所有