摘要:We study the finite satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We show that the problem is undecidable in the case of two linear orders (in the presence of two other binary symbols). In the case of one linear order it is NEXPTIME-complete, even in the presence of the successor relation. Surprisingly, the complexity of the problem explodes when we add one binary symbol more: C2 with one linear order and in the presence of other binary predicate symbols is equivalent, under elementary reductions, to the emptiness problem for multicounter automata.
其他关键词:Two-variable logic, counting quantifiers, linear order, satisfiability, complexity.