摘要:This article is a fundamental study in computable measure theory. We use the framework of TTE, the representation approach, where computability on an abstract set X is defined by representing its elements with concrete "names", possibly countably infinite, over some alphabet {\Sigma}. As a basic computability structure we consider a computable measure on a computable $\sigma$-algebra. We introduce and compare w.r.t. reducibility several natural representations of measurable sets. They are admissible and generally form four different equivalence classes. We then compare our representations with those introduced by Y. Wu and D. Ding in 2005 and 2006 and claim that one of our representations is the most useful one for studying computability on measurable functions.