首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Robust Class of Data Languages and an Application to Learning
  • 本地全文:下载
  • 作者:Benedikt Bollig ; Peter Habermehl ; Martin Leucker
  • 期刊名称:Logical Methods in Computer Science
  • 印刷版ISSN:1860-5974
  • 电子版ISSN:1860-5974
  • 出版年度:2014
  • 卷号:10
  • 期号:4
  • 页码:1
  • DOI:10.2168/LMCS-10(4:19)2014
  • 出版社:Technical University of Braunschweig
  • 摘要:We introduce session automata, an automata model to process data words, i.e., words over an infinite alphabet. Session automata support the notion of fresh data values, which are well suited for modeling protocols in which sessions using fresh values are of major interest, like in security protocols or ad-hoc networks. Session automata have an expressiveness partly extending, partly reducing that of classical register automata. We show that, unlike register automata and their various extensions, session automata are robust: They (i) are closed under intersection, union, and (resource-sensitive) complementation, (ii) admit a symbolic regular representation, (iii) have a decidable inclusion problem (unlike register automata), and (iv) enjoy logical characterizations. Using these results, we establish a learning algorithm to infer session automata through membership and equivalence queries.
  • 其他关键词:Register Automata; Data words; Angluin-style learning; Freshness
国家哲学社会科学文献中心版权所有