首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Parameter Estimation and Stress-Strength Model of Power Lomax Distribution: Classical Methods and Bayesian Estimation
  • 本地全文:下载
  • 作者:Ehab M. Almetwally ; Hisham. M. Almongy
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2020
  • 卷号:18
  • 期号:4
  • 页码:718-738
  • DOI:10.6339/JDS.202010_18(4).0008
  • 出版社:Tingmao Publish Company
  • 摘要:In this paper, parameter estimation for the power Lomax distribution is studied with different methods as maximum likelihood, maximum product spacing, ordinary least squares, weighted least squares, Cramér–von Mises and Bayesian estimation by Markov chain Monte Carlo (MCMC). Robust estimation of the stress-strength model for the Power Lomax distribution is discussed. We propose that the method of maximum product of spacing for reliable estimation of stress-strength model as an alternative method to maximum likelihood and Bayesian estimation methods. A numerical study using real data and Monte Carlo Simulation is performed to compare between different methods.
  • 关键词:Bayesian estimation; Cramér–von Mises; maximum likelihood; maximum product of spacing; weighted least squares; stress-strength model
国家哲学社会科学文献中心版权所有