首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Stationary Bootstrap Based Multi-Step Forecasts for Unrestricted VAR Models
  • 本地全文:下载
  • 作者:U. Beyaztas ; Abdel-Salam G. Abdel-Salam
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2020
  • 卷号:18
  • 期号:4
  • 页码:682-696
  • DOI:10.6339/JDS.202010_18(4).0006
  • 出版社:Tingmao Publish Company
  • 摘要:This paper proposes a new asymptotically valid stationary bootstrap procedure to obtain multivariate forecast densities in unrestricted vector autoregressive models. The proposed method is not based on either backward or forward representations, so it can be used for both Gaussian and non-Gaussian models. Also, it is computationally more efficient compared to the available resampling methods. The finite sample performance of the proposed method is illustrated by extensive Monte Carlo studies as well as a real-data example. Our records reveal that the proposed method is a good competitor or even better than the existing methods based on backward and/or forward representations.
  • 关键词:forecast density; multivariate forecast; resampling method
国家哲学社会科学文献中心版权所有