摘要:This paper proposes a new asymptotically valid stationary bootstrap procedure to obtain multivariate forecast densities in unrestricted vector autoregressive models. The proposed method is not based on either backward or forward representations, so it can be used for both Gaussian and non-Gaussian models. Also, it is computationally more efficient compared to the available resampling methods. The finite sample performance of the proposed method is illustrated by extensive Monte Carlo studies as well as a real-data example. Our records reveal that the proposed method is a good competitor or even better than the existing methods based on backward and/or forward representations.