摘要:The study of semiparametric families is useful because it provides methods of extending families for adding flexibility in fitting data. The main aim of this paper is to introduce a class of bivariate semiparametric families of distributions. One especial bivariate family of the introduced semiparametric families is discussed in details with its sub-models and different properties. In most of the cases the joint probability distribution, joint distribution and joint hazard functions can be expressed in compact forms. The maximum likelihood and Bayesian estimation are considered for the vector of the unknown parameters. For illustrative purposes a data set has been re-analyzed and the performances are quite satisfactory. A simulation study is performed to see the performances of the estimators.
关键词:conditional probability; Gompertz distribution; hazard function; joint probability density; maximum likelihood estimation;Pareto distribution; Weibull distribution