首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Computationally Analyzing Social Media Text for Topics: A Primer for Advertising Researchers
  • 本地全文:下载
  • 作者:Joseph T. Yun ; Brittany R. L. Duff ; Patrick T. Vargas
  • 期刊名称:Journal of Interactive Advertising
  • 印刷版ISSN:1525-2019
  • 电子版ISSN:1525-2019
  • 出版年度:2020
  • 卷号:20
  • 期号:1
  • 页码:47-59
  • DOI:10.1080/15252019.2019.1700851
  • 出版社:University of Michigan
  • 摘要:Advertising researchers and practitioners are increasingly using social media analytics (SMA), but focused overviews that explain how to use various SMA techniques are scarce. We focus on how researchers and practitioners can computationally analyze topics of conversation in social media posts, compare each to a human-coded topic analysis of a brand’s Twitter feed, and provide recommendations on how to assess and choose which computational methods to use. The computational methodologies that we survey in this article are text preprocessed summarization, phrase mining, topic modeling, supervised machine learning for text classification, and semantic topic tagging.
  • 关键词:Social media analytics ; topic discovery ; topic modeling ; computational advertising ; machine learning
国家哲学社会科学文献中心版权所有