首页    期刊浏览 2025年12月05日 星期五
登录注册

文章基本信息

  • 标题:A Conceptual Framework for Data Quality in Knowledge Discovery Tasks (FDQ-KDT): A Proposal
  • 其他标题:A Conceptual Framework for Data Quality in Knowledge Discovery Tasks (FDQ-KDT): A Proposal
  • 本地全文:下载
  • 作者:David Camilo Corrales ; Agapito Ledezma ; Juan Carlos Corrales
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2015
  • 卷号:10
  • 期号:6
  • 页码:396-405
  • DOI:10.17706/jcp.10.6.396-405
  • 出版社:Academy Publisher
  • 摘要:Large Volume of Data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through data mining and data science methodologies. Nevertheless these not tackle the issues in data quality clearly, leaving out relevant activities. We proposed a conceptual framework for data quality in knowledge discovery tasks based on CRISP-DM, SEMMA and Data Science, considering the issues of ESE Taxonomy.
  • 其他关键词:CRISP-DM, data quality framework, data science, ESE taxonomy, FDQ-KDT, Knowledge discovery, SEMMA.
国家哲学社会科学文献中心版权所有