首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Real-Time Social Network Data Mining for Predicting the Path for a Disaster
  • 本地全文:下载
  • 作者:Saloni Jain ; Brett Adams Duncan ; Yanqing Zhang
  • 期刊名称:Journal of Advances in Information Technology
  • 印刷版ISSN:1798-2340
  • 出版年度:2016
  • 卷号:7
  • 期号:2
  • 页码:81-87
  • DOI:10.12720/jait.7.2.81-87
  • 出版社:Academy Publisher
  • 摘要:Traditional communication channels like news channels are not able to provide spontaneous information about disasters unlike social networks, namely, Twitter. This work proposes a framework by mining real-time disaster data from Twitter to predict the path; a disaster like a tornado will take. The users of Twitter act as the sensors, which provide useful information about the disaster by posting first-hand experience, warnings or location of a disaster. The steps involved in the framework are – data collection, data preprocessing, geo-location tagging data filtering and extrapolation of the disaster curve for prediction of susceptible locations. The framework is validated by analyzing the past events using regression with the government warnings. This framework has the potential to be developed into a full-fledged system to provide instantaneous warnings to people about disasters via news channels or broadcasts.
国家哲学社会科学文献中心版权所有