首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Computational Skills for Multivariable Thinking in Introductory Statistics
  • 本地全文:下载
  • 作者:Bryan Adams ; Daniel Baller ; Bryan Jonas
  • 期刊名称:Journal of Statistics Education
  • 电子版ISSN:1069-1898
  • 出版年度:2021
  • 卷号:29
  • 期号:sup1
  • 页码:S123-S131
  • DOI:10.1080/10691898.2020.1852139
  • 出版社:American Statistical Association
  • 摘要:Since the publishing of Nolan and Temple Lang’s “Computing in the Statistics Curriculum” in 2010, the American Statistical Association issued new recommendations in the revised GAISE college report. To reflect modern practice and technologies, they emphasize giving students experience with multivariable thinking. Students develop multivariable thinking when they analyze real data in the context of investigating research questions of interest, which typically involve complex relationships between many variables. Proficiency in a statistical programming language facilitates the development of multivariable thinking by giving students tools to investigate complex data on their own. However, learning a programming language in an introductory course is difficult for many students. In this article, we recommend a set of computational skills for introductory courses, demonstrate them using R tidyverse, and describe a classroom activity to develop computational skills and multivariable thinking. We provide a tidyverse tutorial for introductory students, our course guide, and classroom activities. Supplementary materials for this article are available online at https://github.com/bryaneadams/Computational-Skills-for-Multivariable-Thinking-in-Introductory-Statistics .
  • 关键词:Classroom activity ; COVID-19 ; Censorship ; Statistical computing
国家哲学社会科学文献中心版权所有