摘要:Background Atmospheric deposition of nitrogen and climate change can have impacts on ecological structures and functions, and thus on the integrity of ecosystems and their services. Operationalization of ecosystem integrity is still an important desideratum. Results A methodology for classifying the ecosystem integrity of forests in Germany under the influence of climate change and atmospheric nitrogen deposition is presented. The methodology was based on 14 indicators for six ecosystem functions: habitat function, net primary function, carbon sequestration, nutrient and water flux, resilience. It allows assessments of ecosystem integrity changes by comparing current or prospective ecosystem states with ecosystem-type-specific reference states as described by quantitative indicators for 61 forest ecosystem types based on data before 1990. Conclusion The method developed enables site-specific classifications of ecosystem integrity as well as classifications with complete coverage and determinations of temporal trends as shown using examples from the Thuringian Forest and the “Kellerwald-Edersee” National Park (Germany).
其他摘要:Abstract Background Atmospheric deposition of nitrogen and climate change can have impacts on ecological structures and functions, and thus on the integrity of ecosystems and their services. Operationalization of ecosystem integrity is still an important desideratum. Results A methodology for classifying the ecosystem integrity of forests in Germany under the influence of climate change and atmospheric nitrogen deposition is presented. The methodology was based on 14 indicators for six ecosystem functions: habitat function, net primary function, carbon sequestration, nutrient and water flux, resilience. It allows assessments of ecosystem integrity changes by comparing current or prospective ecosystem states with ecosystem-type-specific reference states as described by quantitative indicators for 61 forest ecosystem types based on data before 1990. Conclusion The method developed enables site-specific classifications of ecosystem integrity as well as classifications with complete coverage and determinations of temporal trends as shown using examples from the Thuringian Forest and the “Kellerwald-Edersee” National Park (Germany).