摘要:Background There is increasing global concern regarding the health impacts of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are emerging environmental endocrine disruptors. Results from previous epidemiological studies on the associations between PFAS exposure and sex hormone levels are inconsistent. Objective We examined the associations between serum PFAS compounds (PFDeA, PFHxS, PFNA, PFOA, PFOS) and sex hormones, including total testosterone (TT), free testosterone (FT), estradiol (E), and serum hormone binding globulin (SHBG). Results After adjusting for potential confounders, PFDeA, PFOS, and PFHxS exposures were significantly associated with increased serum testosterone concentrations in males. PFDeA, PFOA, and PFOS exposures were positively correlated with FT levels in 20–49-year-old women, while PFOS exposure was negatively associated with TT levels in 12–19-year-old girls. PFAS exposure was negatively associated with estradiol levels including: PFDeA in all females, PFHxS, PFNA, PFOS, and PFOA in 12–19-year-old girls, PFNA in women above 50 years, and PFOA in 12–19-year-old boys, while PFDeA and PFOS exposures were positively associated with estradiol levels in these boys. n-PFOS exposure was positively associated with SHBG levels in men older than 20 and in all females. Conclusions Using a large cohort of males and females aged from 12 to 80, we found that PFAS exposure appears to disrupt sex hormones in a sex-, age-, and compound-specific manner. Future work is warranted to clarify the causality and mechanisms involved.
其他摘要:Abstract Background There is increasing global concern regarding the health impacts of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are emerging environmental endocrine disruptors. Results from previous epidemiological studies on the associations between PFAS exposure and sex hormone levels are inconsistent. Objective We examined the associations between serum PFAS compounds (PFDeA, PFHxS, PFNA, PFOA, PFOS) and sex hormones, including total testosterone (TT), free testosterone (FT), estradiol (E), and serum hormone binding globulin (SHBG). Results After adjusting for potential confounders, PFDeA, PFOS, and PFHxS exposures were significantly associated with increased serum testosterone concentrations in males. PFDeA, PFOA, and PFOS exposures were positively correlated with FT levels in 20–49-year-old women, while PFOS exposure was negatively associated with TT levels in 12–19-year-old girls. PFAS exposure was negatively associated with estradiol levels including: PFDeA in all females, PFHxS, PFNA, PFOS, and PFOA in 12–19-year-old girls, PFNA in women above 50 years, and PFOA in 12–19-year-old boys, while PFDeA and PFOS exposures were positively associated with estradiol levels in these boys. n-PFOS exposure was positively associated with SHBG levels in men older than 20 and in all females. Conclusions Using a large cohort of males and females aged from 12 to 80, we found that PFAS exposure appears to disrupt sex hormones in a sex-, age-, and compound-specific manner. Future work is warranted to clarify the causality and mechanisms involved.